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Abstract
Currently, extracellular vesicles and particularly exosomes have gained a lot of 
research interest due to their unique roles in several biological processes. 
Noncoding RNAs (microRNAs, long noncoding RNAs and circular RNAs) 
represent a class of functional RNA with distinct regulatory roles in tumorigenesis 
and cancer progression. Cholangiocarcinoma is a rare but highly aggressive type 
of malignancy that is very challenging to diagnose, especially in early stages; 
surgical resection still represents the sole potentially curative treatment option. 
Hence, there is an urgent need for the discovery of novel diagnostic and 
prognostic biomarkers. Hereby, we provide a comprehensive review of the most 
recent discoveries that focus on exosomal noncoding RNAs in cholangio-
carcinoma with the aim to identify new molecular players that could be used as 
biomarkers and therapeutic targets.

Key Words: Cholangiocarcinoma; Long noncoding RNAs; MicroRNAs; Circular RNAs; 
Piwi-interacting RNAs; Exosomes; Extracellular vesicles

https://www.f6publishing.com
https://dx.doi.org/10.4240/wjgs.v12.i10.407
http://orcid.org/0000-0001-5224-3192
http://orcid.org/0000-0001-5224-3192
http://orcid.org/0000-0003-3696-8550
http://orcid.org/0000-0003-3696-8550
http://orcid.org/0000-0003-3696-8550
http://orcid.org/0000-0002-2106-1713
http://orcid.org/0000-0002-2106-1713
http://orcid.org/0000-0003-3892-9678
http://orcid.org/0000-0003-3892-9678
http://orcid.org/0000-0001-5410-3046
http://orcid.org/0000-0001-5410-3046
http://orcid.org/0000-0003-4900-9711
http://orcid.org/0000-0003-4900-9711
http://orcid.org/0000-0003-4900-9711
http://orcid.org/0000-0002-3295-6811
http://orcid.org/0000-0002-3295-6811
http://orcid.org/0000-0002-3295-6811
mailto:mgazouli@med.uoa.gr


Laschos K et al. Exosomal noncoding RNAs in CCA

WJGS https://www.wjgnet.com 408 October 27, 2020 Volume 12 Issue 10

distribute, remix, adapt, build 
upon this work non-commercially, 
and license their derivative works 
on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt
p://creativecommons.org/License
s/by-nc/4.0/

Manuscript source: Invited 
manuscript

Received: July 29, 2020 
Peer-review started: July 29, 2020 
First decision: August 9, 2020 
Revised: August 19, 2020 
Accepted: September 14, 2020 
Article in press: September 14, 2020 
Published online: October 27, 2020

P-Reviewer: Cui Y, Ullah M 
S-Editor: Wang JL 
L-Editor: Filipodia 
P-Editor: Zhang YL

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Although there are currently several original research studies investigating 
the role of noncoding RNAs in cholangiocarcinoma, very few have focused 
specifically on exosomal noncoding RNA signatures. This is the first review to 
summarize and report current data regarding exosomal noncoding RNAs in 
cholangiocarcinoma and discuss their potential future clinical applications.

Citation: Laschos K, Lampropoulou DI, Aravantinos G, Piperis M, Filippou D, Theodoropoulos 
G, Gazouli M. Exosomal noncoding RNAs in cholangiocarcinoma: Laboratory noise or hope? 
World J Gastrointest Surg 2020; 12(10): 407-424
URL: https://www.wjgnet.com/1948-9366/full/v12/i10/407.htm
DOI: https://dx.doi.org/10.4240/wjgs.v12.i10.407

INTRODUCTION
Cholangiocarcinoma (CCA) is a type of highly heterogenous group of epithelial 
malignancies that can originate from any division of the biliary tree. The classification 
of CCA is based on the anatomic location with regards to the liver and includes three 
subtypes: Intrahepatic, perihilar (Klatskin tumor) and distal extrahepatic[1]. The 
heterogenous nature of this type of cancer also corresponds to several epidemiological, 
biological and clinicopathological features. Intrahepatic CCA is the second most 
common primary liver cancer after hepatocellular carcinoma, and its prognosis is very 
poor, mainly depending on the potential and extent of surgical resection[2,3]; the five-
year survival rates drop to 2% for cases that are diagnosed with distant metastases[4]. 
Treatment options for inoperable and/or microscopically positive surgical resection 
margin (R1) cases, include chemoradiation therapy[5]. However, the response rates still 
remain very low, and the clinical management of the advanced CCA is lacking a “gold 
standard” chemotherapy regimen[6].

Several risk factors have been associated with CCA pathogenesis including 
hepatobiliary disorders such as primary sclerosing cholangitis (PSC), the presence of 
choledochal cysts, hepatolithiasis, viral hepatitis B and C-induced chronic hepatitis 
and cirrhosis[7-9]. Moreover, parasite (Opisthorchis viverrini or Clonorchis sinensis)- 
induced infections[10] as well as genetic factors[11], obesity, smoking and alcohol 
consumption have also been correlated with increased risk of CCA[9].

CCA is a highly aggressive, rare type of malignancy that is very challenging to 
diagnose at an early, potentially curable stage. The confirmation of the diagnosis 
usually results from the combination of: (1) Imaging, such as computed tomography, 
magnetic resonance imaging, magnetic resonance cholangiopancreatography, 
endoscopic retrograde cholangiopancreatography and positron emission tomography; 
(2) Biochemical; and (3) Histological data[12]. Moreover, the assessment of cancer 
biomarkers, namely carbohydrate antigen 19-9 and carcinoembryonic antigen, is a 
common routine practice towards the diagnosis, but their usefulness remains 
controversial due to their low sensitivity and specificity to detect CCA in early 
stages[13]. Therefore, there is an urgent need for novel diagnostic and therapeutic 
approaches towards the prompt detection and management of CCA.

Exosomes represent a distinct type of extracellular vesicle (EV) that mediate 
intercellular communication and have recently emerged as promising biomarkers and 
therapeutic targets in the cancer field[14,15]. There is also evidence that circulating EVs 
play an important role in the pathogenesis of liver disease via the modulation of 
several cell signaling mechanisms[16]. Many studies have shown that there is a different 
expression of exosomal noncoding RNAs (ncRNAs) in cancer patients compared to 
healthy subjects and often mirrors the type of cancer. The mechanisms of EV 
packaging remain unclear; however, several factors that affect the composition of EVs 
have been described so far. These include: (1) The upregulation of a distinct RNA type 
in parental cells; and (2) The existence of sorting processes that may be biotype-
specific[17]. The content of exosomes consists of a mosaic cargo including proteins, 
lipids and nucleic acids[18]. Tumor-derived (TD) exosomes can act as transporters of 
this load; the latest may include cancer-related signaling molecules that can be 
transferred to other recipient cells via exosome fusion with the target cell membrane. 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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The transported genetic information can subsequently regulate gene expression in the 
recipient cell, which in turn may trigger several tumor-related processes, such as 
tumor proliferation, epigenetic reprogramming, invasion and metastasis[19-22].

Hereby, we review the current evidence regarding the roles of exosomal ncRNAs 
and discuss their diagnostic and therapeutic potential in CCA. For clarity, because the 
term “EVs” has been ambiguous in the literature and often coincides and/or is being 
confused with the term “exosomes,” in the present work we will try to include data 
that refer to primarily exosomal and secondarily EV-derived ncRNAs in CCA.

EXOSOMES IN CANCER: BIOGENESIS AND CHARACTERISTICS 
Compared to microvesicles (the second main type of extracellular vesicles), exosomes 
differ in size and biogenesis pathway. More specifically, exosomes are smaller than 
microvesicles ranging in diameter from 30 to 100 nm and originate from the 
endosomal network. Moreover, they are released to the extracellular space by 
multivesicular bodies (MVBs) following fusion with the cellular membrane. On the 
other hand, microvesicles are larger in size (50 to 1000 nm in diameter), and they are 
secreted to the extracellular environment through direct outward budding of the 
plasma membrane[15-19].

The process of exosome biogenesis includes the following steps: (1) Early endosome 
creation from the plasma membrane; (2) MVB formation; and (3) Initial formation of 
exosomes as intraluminal vesicles (ILVs) in the MVBs. These components are either 
degraded by lysosomes or released as exosomes to the extracellular space after fusion 
with the plasma membrane. During this process, several biomolecules such as 
cytosolic proteins, lipids and nucleic acids are incorporated in the MVBs[20] (Figure 1).

Two main mechanisms orchestrate ILV formation and the packaging of bioactive 
exosomal cargo. The first one depends on the endosomal sorting complexes required 
for the transport system whereas the second depends on raft-based microdomains, 
such as tetraspanin-enriched microdomains, tetraspanins and lipids[21].

Exosomes and their parental cell-specific cargos can be secreted by all eukaryotic 
cells, both healthy and tumor, into the extracellular environment. Then they can either 
enter neighboring recipient cells by endocytosis or travel through biological fluids 
such as blood, urine and saliva. Exosome uptake from the recipient cell takes place 
after cellular recognition and internalization. It has been reported that tumor cells can 
release ten times more exosomes than healthy cells and that TD exosomes exhibit pro-
oncogenic properties, such as promoting cell proliferation, epithelial-to-mesenchymal 
transition (EMT), angiogenesis, metastasis and drug resistance[21,23] (Figure 2). With 
regard to CCA, bile EV concentrations were found to be significantly increased in 
patients with CCA suggesting that they could be used for diagnostic testing[24]. In 
conclusion, exosomes are considered to be crucial mediators of intercellular 
communication because they can transfer their content and alter biological responses 
in other cells.

Accumulating evidence shows that exosomal components may play crucial roles in 
several cancer related processes such as angiogenesis and metastasis colonization. The 
“pre-metastatic niche” is the microenvironment created by TD exosomes and 
facilitates metastasis[25]. Recent work has also demonstrated that exosomes promote 
neoangiogenesis at the pre-metastatic niche by several mechanisms including: (1) 
Protein activation (i.e., activation of transcription factor 2 and metastasis-associated 
protein 1)[26]; (2) Vascular permeability promotion via soluble E-cadherin[27]; and (3) The 
release of proangiogenic factors that promote neovascularization [microRNAs 
(miRNAs), vascular endothelial growth factor and cytokines][28,29]. Moreover, several 
mechanisms implicating TD exosomal miRNAs, kinases and other factors affecting the 
process of metastasis have been identified in current literature[30,31].

EXTRACELLULAR VESICLES IN CCA PATHOPHYSIOLOGY
Over the last decade several studies have focused on the role of EVs and exosomes in 
biliary pathophysiology and CCA pathogenesis[16,32]. In 2010, Masyuk et al[33] found that 
bile exosomes released by normal cholangiocytes directly interacted with primary cilia 
and inhibited cell proliferation via the ERK signaling pathway. During CCA 
development, EVs promote the myofibroblast-like transdifferentiation of bone marrow 
mesenchymal stem cells (MSCs) and thus favor the formation of tumor stroma. 
Moreover, they stimulated IL-6 production contributing further to CCA growth[34,35]. 
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Figure 1 Biogenesis and release of exosomes. Initial formation of the late endosome from early endosome. Subsequently, the late endosome transforms to 
multivesicular bodies. The latest can either get degraded by lysosomes or release exosomes to the extracellular environment following fusion with the cellular 
membrane. MVB: Multivesicular body.

Chen et al[36] reported that TD exosomes contributed to CCA escape from immune 
recognition by downregulating CD3+, CD8+, NK (CD56+) cells and by decreasing TNF-
α and perforin production.

Additionally, CCA cell-derived EVs are loaded with a unique content that has been 
associated with tumorigenic effects. Proteomic analysis identified various oncogenic 
proteins such as epidermal growth factor receptor and integrin beta-4 in CCA vs 
healthy cholangiocyte-derived EVs[37]. Accordingly, Dutta et al[38], reported that various 
cancer-related proteins (i.e., large neutral amino acids transporter small subunit 1 
(LAT1), 4F2 cell-surface antigen heavy chain, pyruvate kinase) were disclosed in CCA-
derived exosomes compared to normal human cholangiocytes (H69), providing 
evidence for their direct intercellular transport by the exosomes. Recently, the 
phosphorylation level of exosomal heat shock protein 90 was also found to be 
significantly related with tumor malignancy in an in vitro model of isogenic CCA 
cells[39].

EXOSOMAL NCRNAs IN CCA: CURRENT EVIDENCE
Exosomal miRNAs and CCA
Dysregulation of cellular miRNAs in several types of cancer has been a topic of 
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Figure 2 Functional roles of exosomes in cholangiocarcinoma. Tumor-derived exosomes are released to the tumor microenvironment and distant organs 
transferring bioactive molecules and thus regulating several cancer-related processes such as epithelial-mesenchymal transition, drug resistance, pre-metastatic 
niche formation, angiogenesis and tumor immunity. EMT: Epithelial-mesenchymal transition.

extensive investigation; currently there is emerging evidence that exosomal miRNA 
expression is also modified, suggesting that it may serve as a potential biomarker for 
cancer diagnosis and prognosis[40]. In 2013, Huang et al[41] first reported that amongst 
other exosomal RNA species, miRNAs were the most abundant in human plasma-
derived exosomes. miRNAs are short ncRNAs consisting of 21–25 nucleotides that are 
critically involved in the regulation of gene expression[19]. The exosome-loading 
process starts after miRNA biogenesis and includes a complex of different components 
such as mature and pre-miRNAs, other RNA species, proteins and lipids. This cargo 
mirrors the content of the parent cell and is transferred to the recipient cell via fusion 
with the plasma membrane. Subsequently, transported miRNAs can play regulatory 
roles in the recipient cells[42]. Thus, CCA-derived exosomes can act as cancer migration 
and invasion mediators by transferring oncogenic miRNAs to normal cholangiocytes.

To date, several studies have investigated the role of miRNAs in the initiation and 
progression of CCA, but only a few have focused specifically on the exosomal miRNA 
profiling and role (Table 1). Reportedly, miR-205 can act as an oncogene or tumor 
suppressor[43]; miR-205 overexpression has been implicated in the development and 
progression of several cancers[44,45]. Okamoto et al[46] reported that miR-205 levels were 
associated with gemcitabine resistance in HuH28 cell lines and that miR-205 
upregulation was related with restoring gemcitabine sensitivity. Interestingly, 
exosome-derived miR-205 from human CCA cell lines was found to be overexpressed, 
and knockdown of miR-205-5p expression repressed migration and invasion in CCA 
cell lines[47]. The same study also supported the role of exosomal miR-200 family 
members in CCA progression. Consistent with this observation, Shen et al[48] found that 
the miR-200 family was differentially expressed in peripheral blood-derived exosomes 
of CCA patients.

On the contrary, exosomal miR-199 family members and their clustered miRNA, 
hsa-miR-214-3p were found to be downregulated in human CCA cell line-derived 
exosomes, supporting their role in CCA carcinogenesis[47]. Furthermore, a panel of five 
miRNAs (miR-191, miR-486-3p, miR-1274b, miR-16 and miR-484) were upregulated in 
bile EVs from CCA patients vs a control group of patients suffering from PSC, biliary 
obstruction and bile leak. Of note, the study isolation protocol supported that the 
identified EVs were probably exosomes[49].

It is well known that cancer invasion and metastasis have also been associated with 
EMT promotion. A recent study investigated the role of EV-miRNAs in regulating 
EMT process in CCA cells. The authors concluded that miR-30e expression was 
decreased by TGF-β[50]; the latter has been previously identified as an EMT inducer[51]. 



Laschos K et al. Exosomal noncoding RNAs in CCA

WJGS https://www.wjgnet.com 412 October 27, 2020 Volume 12 Issue 10

Table 1 Potential clinical application of selected extracellular vesicle-derived microRNAs as biomarkers in cholangiocarcinoma

microRNA Expression Type of 
EVs EV source Major finding Potential application Ref.

miR-205 ↑ Exosomes Human CCA cell lines Downregulation of miR-205-5p decreased migration and invasion in CCA cell 
lines

Therapy monitoring/therapeutic 
target

[47]

Members of miR-200 family

miR-200c-3p, miR-200b-3p, miR-
200a-3p, miR-429 and miR-141-3p

↑ Exosomes Human CCA cell lines Supported the role of exosomal miR-200 family in CCA progression Prognostic value [47]

miR-200c-3p, miR-200a/c-3p ↑ Exosomes Peripheral blood samples (36 patients) (a) miR-200c-3p emerged as a potential diagnostic biomarker; and (b) miR-
200a/c-3p emerged as a potential diagnostic and prognostic biomarker

Early diagnostic and prognostic value [48]

miR-199 family ↓ Exosomes Human CCA cell lines Supported the role of miR-199 family in CCA carcinogenesis - [47]

miR-214 ↓ Exosomes Human CCA cell lines Supported the role of miR-214 in CCA carcinogenesis - [47]

5 miR-based panel (miR-191, miR-
486-3p, miR-1274b, miR-16 and 
miR-484)

↑ EVs Bile samples (46 CCA vs 50 control 
patients with PSC, biliary obstruction and 
bile leak)

(a) The panel displayed a 67% sensitivity and 96% specificity for CCA diagnosis; 
and (b) tool for differential diagnosis between biliary obstruction of 
nonmalignant etiologies and CAA

Diagnostic value [49]

miR-30e ↓ EVs Nonmalignant human cell vs CCA cell 
lines

Encapsulation of miR-30e in EVs could suppress CCA cell invasion and 
migration by inhibiting EMT

EVs may be used as vehicles for 
delivery of therapeutic agents

[50]

miR-195 ↓ EVs Human liver stellate cell line Coculture of CCA and stellate cell lines resulted in downregulation of miR-195. 
EV-mediated miR-195 transfer targeted tumor cells and inhibited proliferation 
in a rat model.

EVs may be used as vehicles for 
delivery of therapeutic agents

[52]

miR-604 ↑ EVs Serum Displayed 0.944 diagnostic capacity for CCA Diagnostic value [53]

miR-551B ↑ EVs Serum Displayed 0.909 diagnostic capacity for CCA Diagnostic value [53]

miR-96-5p, miR-151a-5p, miR-191-
5p and miR-4732-3p

↑ Exosomes Blood Stage II CCA patients displayed the highest levels Diagnostic value in early CCA stages [58]

miR-9-5p ↑ Exosomes Human ICC samples Significant association with malignancy promotion via ↑IL-6 expression in 
vCAFs

Prognostic value [59]

EV: Extracellular vesicle; CCA: Cholangiocarcinoma; ICC: Intrahepatic cholangiocarcinoma; PSC: Primary sclerosing cholangitis; EMT: epithelial-mesenchymal transition; vCAF: Vascular cancer-associated fibroblast.

More importantly, this study demonstrated that miR-30e encapsulation in EVs could 
halt CCA cell invasion and migration by inhibiting EMT[50]. Similarly, miR-195 levels 
were downregulated in cholangiocarcinoma cells, and EV-incorporated miR-195 
decreased cancer progression in a rat CCA model[52].

Another recent study demonstrated that miR-551B and miR-604 were significantly 
upregulated in serum EVs, displaying an optimal diagnostic capacity for CCA[53]. 
Interestingly, Chang et al[54] had previously reported that decreased miR-551b-3p levels 
were associated with poor overall survival of CCA patients. It is worth noting that 
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miR-551b-3p expression in cancer varies in the literature. For instance, miR-551b-3p 
upregulation has been reported in papillary thyroid carcinoma[55] and ovarian 
cancer[56], whereas gastric cancer has been associated with miR-551b-3p 
downregulation[57]. Therefore, further research may be required in order to investigate 
the expression and functional roles of miR-551b-3p in CCA.

Recently, four miRNAs (miR-96-5p, miR-151a-5p, miR-191-5p and miR-4732-3p) 
were found to be significantly overexpressed in blood-derived exosomes of CCA 
patients[58], and exosomal miR-9-5p was proposed as a potential prognostic biomarker 
for intrahepatic cholangiocarcinoma[59]. Mir-9-5p has been previously associated with 
angiogenesis promotion in cervical cancer[60].

Exosomal long ncRNAs and CCA
Long ncRNAs (lncRNAs) represent a subclass of ncRNAs (more than 200 nucleotides 
long) with distinct roles in several biological processes including cell proliferation, 
differentiation, invasion and metastasis. Several studies have found that lncRNAs can 
act as crucial mediators of cancer development, including CCA. Recent evidence 
supports their involvement in CCA progression via the competing endogenous RNA 
(ceRNA) network[61]. lncRNA levels in secreted exosomes have been suggested to be 
similar with those detected in plasma[62]. Although some lncRNA-specific loading 
mechanisms have been described in the literature[63], the exact process that drives the 
exosomal loading with a specific biological cargo remains unclear.

Many studies have investigated the abnormal expression of specific lncRNAs and 
their association with CCA development and progression. However, little research has 
focused on the exosome and/or EV-lncRNA expression. Given that a very recent 
extensive review summarizes the roles of lncRNAs in CCA[64], we will refer to and 
discuss current literature evidence based on studies investigating the functional roles 
of lncRNAs in EVs with an emphasis to exosomes (Table 2).

Ge et al[63], reported that two lncRNAs (ENST00000588480.1 and ENST00
000517758.1) were significantly upregulated in exosomes isolated from bile samples of 
CCA and benign biliary obstruction patients. This study demonstrated that both 
lncRNAs play crucial roles in CCA carcinogenesis and progression. Furthermore, a 
recent study identified the differential expression of several lncRNAs in urine and 
serum-isolated EVs from patients with CCA, PSC and healthy subjects. More 
specifically, the expression of three lncRNAs (MALAT-1, LOC643955 and 
LOC100190986) was significantly altered in serum EVs from CCA patients compared 
to patients with PSC[53]. Indeed, Tan et al[65] previously reported the oncogenic role of 
MALAT-1 in human hilar cholangiocarcinoma cell lines. The authors found that 
MALAT-1 was associated with prognosis and several clinicopathological parameters, 
such as stage, tumor size and perineural invasion. Furthermore, Shi et al[66] reported the 
aberrant expression of three lncRNAs (including MALAT-1) in plasma samples from 
hilar cholangiocarcinoma patients, suggesting that they may serve as candidate 
biomarkers for the early detection of hilar cholangiocarcinoma. Similarly, three 
lncRNAs (LOC100134868, HLA complex group 4 and LOC100134713) were 
differentially expressed in urine EVs from CCA patients compared to patients with 
PSC[53]. HLA complex group 4  was recently identified as one of the optimal feature 
coding genes participating in the ceRNA regulatory network and implicated in 
laryngeal cancer recurrence[67].

In summary, despite the emerging role of exosomal lncRNAs as potential cancer 
biomarkers, to date very few researches have been focused on CCA. Most of the 
available data cannot determine direct associations between the exosomal lncRNAs 
and CCA development and progression. Moreover, to our knowledge no evidence 
exists regarding the sensitivity and specificity of lncRNAs in a clinical setting.

Circular RNAs and CCA
Besides miRNAs and lncRNAs, circular RNAs (circRNAs) represent another subclass 
of bioactive ncRNAs. Originally, circRNAs were considered an RNA splicing 
byproduct with negligible functions. Recent findings suggested that exosomal 
circRNAs can serve as candidate cancer biomarkers due to their high stability in 
exosomes[68].

CircRNA production originates from pre-mRNA back-splicing of exons, resulting in 
a single-stranded, closed, circular structure. Emerging evidence shows that they 
participate in several pathophysiological processes and that their expression is 
significantly altered during cancer development[69,70]. Conn et al[71] proposed that 
circRNAs are implicated in the EMT process and thus affect cell migration, invasion 
and tumor metastasis. Their regulatory role in the transcription process has also been 
reported[72].
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Table 2 Potential clinical application of selected extracellular vesicle-derived long noncoding RNAs as biomarkers in 
cholangiocarcinoma

lncRNA Expression Type of 
EVs EV source Major finding Potential application Ref.

ENST00000517758.1 
and 
ENST00000588480.1

↑ Exosomes Bile samples of 
CCA (n = 35) and 
biliary obstruction 
patients (n = 56)

(a) ENST00000588480.1 expression may 
contribute to tumorigenesis and CCA 
progression (via p53 signaling pathway); and (b) 
Combined ENST00000588480.1 and 
ENST00000517758.1 exhibited higher sensitivity 
than CA19-9 (82.9% vs 74.3%)

Diagnostic value; 
Prognostic 
value/Therapeutic 
target

[63]

MALAT-1 ↑ EVs Serum Upregulated in EVs from CCA vs PSC patients Diagnostic value [53]

lncRNA: Long noncoding RNA; EV: Extracellular vesicle; CCA: Cholangiocarcinoma; PSC: Primary sclerosing cholangitis.

Few studies have investigated the role of circRNAs in CCA tumorigenesis and 
progression. Cdr1as was found to be upregulated in cholangiocarcinoma tissues, and 
its expression level was positively correlated with clinicopathological parameters 
(tumor, node, metastasis stage, lymph node invasion and postsurgery recurrence). The 
authors also supported that high Cdr1as expression was associated with poor overall 
survival, highlighting the potential role of this circRNA as a prognostic biomarker[73]. 
Another study found that hsa_circ_0001649 was downregulated in CCA tissues, and it 
was associated with tumor size and grade. Moreover, it was suggested that 
upregulation of hsa_circ_0001649 resulted in tumor suppression both in vivo and in 
vitro[74]. Increased hsa_circ_0001649 expression was also negatively correlated with 
tumor progression in hepatocellular carcinoma[75] and in pancreatic ductal 
adenocarcinoma[76]. Its potential role as a tumor suppressor in gastrointestinal 
malignancies was further supported by a recent study; upregulation of 
hsa_circ_0001649 inhibited tumor growth and metastasis in gastric cancer cells[77]. 
Finally, Xu et al[78] proposed that circ_0005230 inhibited cell apoptosis and promoted 
cell proliferation and metastasis in CCA cells.

To the best of our knowledge, only two studies have investigated the possible 
association of exosomal circRNA expression in cholangiocarcinoma so far. According 
to Wang et al[79], circRNA 0000284 was found to be significantly upregulated in CCA 
cell lines, tumor tissues and plasma exosomes. Furthermore, exosome-mediated circ-
0000284 transfer to neighboring normal cells resulted in tumorigenesis and CCA 
progression. Hence, circ-0000284 was reported to exhibit autocrine and paracrine 
actions through exosomal intercellular communication. Recently, circ-CCAC1 was 
found upregulated in circulating EVs exerting a potential role in CCA diagnosis and 
prognosis[80].

Piwi-interacting RNAs and CCA
Piwi-interacting RNAs (piRNAs) represent the largest class of ncRNAs; piRNAs are 26 
to 31 nucleotides long and specifically interact with piwi-domain containing 
proteins[81]. More recent evidence suggests that piRNAs are involved in gene 
regulation at epigenetic and posttranscriptional levels, emerging as new mediators in 
the process of carcinogenesis[82,83]. In 2016, Yuan et al[84] noticed that piRNAs were 
differentially expressed in plasma-derived exosomes of cancer patients compared to 
healthy subjects. Currently, the majority of published studies have focused on the 
potential role of piRNAs as diagnostic and prognostic biomarkers in other types of 
malignancies, such as colorectal cancer and hepatocellular carcinoma[85,86].

On the other hand, very little is known about the roles of piRNAs in CCA. Chen 
et al[87] reported that piwi-like protein 2 was significantly overexpressed in both hilar 
CCA tissues and the QBC939 cell line. Based on this observation, Gu et al[88] further 
investigated exosomal piRNA signatures and found that several piRNAs were 
differentially expressed in CCA patients compared to healthy individuals. More 
importantly, the authors suggested that piR-10506469 was significantly overexpressed 
in plasma-derived exosomes from CCA patients and that piR-10506469 and piR-
20548188 were significantly downregulated after surgery, suggesting that these 
piRNAs may serve as potential diagnostic and prognostic biomarkers.
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DEREGULATION OF NCRNAs IN CCA: MOLECULAR MECHANISMS
In terms of epigenetic modifications, miRNA downregulation has often been 
associated with hypermethylation of their promoters. For instance, epigenetic silencing 
of tumor suppressor miR-370 in human CCA has been linked to hypermethylation of 
its promoter by IL-6-dependent overexpression of DNA methyltransferases[89]. 
Interestingly, An et al[90] suggested that miR-370 silencing in CCA follows Knudson’s 
“two-hit hypothesis” mechanism via IL-6 mediated maternal to paternal epigenotype 
switch. Furthermore, CpG island hypermethylation of miR-373 resulted in miR-373 
downregulation in hilar cholangiocarcinoma[91]. Accordingly, increased methylation of 
CpG sites upstream of miR-376c gene was found in intrahepatic CCA cell lines[92]. CCA 
tumorigenesis and progression has also been associated with Notch pathway 
activation[93]. Enhancer of zeste homolog 2 (EZH2) and DNA methylation-induced 
miR-34a silencing resulted in the promotion of CCA cell growth through activation of 
the Notch pathway[94]. Interferon regulatory factor-1 (IRF-1) has been suggested as a 
tumor suppressor in CCA[95], and miR-383 has been recently found to directly target 
IRF-1[96]. These findings suggest that the targeting of IRF-1 by miR-383 may be the 
molecular basis for IRF-1 downregulation in CCA.

ncRNAs can regulate gene expression at several levels (epigenetic, transcriptional 
and posttranscriptional). On this basis, the regulatory scenario is enormous and 
remains under investigation. The exact underlying mechanisms of many ncRNA 
functions remain unclear. In the following section will focus on the molecular 
mechanisms of exosomal miRNAs in CCA.

The hypomethylated status of the miR-429 promoter has been correlated with 
increased miR-429 expression in CCA. Goeppert et al[97] demonstrated that 
epigenetically dysregulated miR-429 directly targeted cadherin-6 and promoted tumor 
growth. Exosomal miR-551b levels were upregulated in EVs isolated from CCA 
patients[53]. LncRNA SMARCC2 acts as a “sponge” RNA promoting the aberrant miR-
551b-3p expression in gastric cancer[57]. On the other hand, Chang et al[54] demonstrated 
that miR-551b-3p directly targeted and decreased CCND1 expression, inhibiting CCA 
cell cycle progression and proliferation. miR-551b downregulation in breast cancer 
patients was associated with hypermethylation of its promoter[98]. Exosome-derived 
miR-205 and members of the miR-200 family were found to be overexpressed in CCA 
cell lines[47]. It has been previously suggested that these miRNAs cooperatively 
regulate EMT by targeting the transcriptional repressors ZEB1 and SIP1[99]. Moreover, 
miR-205 upregulation was associated with enhancing gemcitabine sensitivity in CCA 
cell lines; however, the authors could not identify possible target genes that could be 
associated with chemosensitivity[46]. Another study suggested that miR-205 promotes 
tumor invasion and metastasis in ovarian cancer via suppressing PTEN/SMAD4 
expression[44]. MiR-199a-3p has also been implicated in increasing cisplatin sensitivity 
by inhibiting the mTOR pathway and by downregulating the MDR1 gene[100]. Recently, 
Zhang et al[101] reported that exosomes can act as carriers of miR-199a-3p in 
hepatocellular carcinoma. Interestingly, the authors concluded that intravenous 
injection of exo-miR-199a-3p increased resistance to cisplatin, offering a novel option 
for cisplatin refractory cancers. KEGG pathway analysis revealed that several CCA-
associated, exosomal miRNA (miR-96-5p, miR-151a-5p, miR-191-5p and miR-4732-3p) 
target genes were enriched in the MAPK signaling pathway, suggesting their role in 
the process of neurogenesis[58]. miR-9-5p is another important miRNA that was 
upregulated in CCA-derived exosomes; miR-9-5p expression in intrahepatic 
cholangiocarcinoma was correlated with IL-6 upregulation in vascular cancer-
associated fibroblasts via EZH2 overexpression[59]. Furthermore, Wei et al[60], suggested 
that it could promote angiogenesis in cervical cancer by targeting suppressor of 
cytokine signaling 5.

Accumulating evidence has demonstrated that lncRNAs may interact with miRNAs 
as ceRNAs and regulate gene expression at the posttranscriptional level. Several 
lncRNAs, such as lncRNA TUG1, lncRNA HULC, lncRNA H19, PVT1 and LINC01296 
have been identified as ceRNAs in CCA[64,102]. Furthermore, another oncogenic lncRNA, 
SPRY4-IT1, interacts with EZH2, lysine specific demethylase 1 and DNA 
methyltransferase 1 serving as a molecular scaffold[64]. In addition, some lncRNAs, 
such as SNHG1, directly interact with EZH2 and regulate gene transcription[103].

Exosomal MALAT-1 was upregulated in serum isolated EVs from CCA patients. 
Mechanistically, MALAT-1 acted as a ceRNA via miR-204-dependent CXCR4 
regulation[65]. Furthermore, Wang et al[104] supported that MALAT-1 exerted its 
oncogenic functions in CCA by activating PI3K/Akt pathway. Zinc fingers and 
homeoboxes 1 (ZHX1) functions as a transcription repressor binding DNA 
methyltransferase 3B; ZHX1 was associated with CCA development and 
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metastasis[105]. A recent study supported that suppression of the lncRNA 
MALAT1/miR-199a/ZHX1 axis inhibited glioblastoma progression[106]. Given that 
exosomal MALAT-1 and miR-199a roles in CCA have been previously described, 
future studies could investigate the potential role of MALAT1 in ZHX1 regulation by 
sponging miR-199a. The lncRNAs, ENST00000588480.1 and ENST00000517758.1 have 
been associated with promoting CCA development via the p53 signaling pathway[63].

The functions and underlying molecular mechanisms of circRNAs in cancer have 
gained increasing scientific interest. Some of the proposed mechanisms include their 
ability to (a) regulate gene transcription by binding to RNA polymerase II; (b) alter 
protein activity; and c) act as ceRNAs[107].

The oncogenic role of circ_0005230 in CCA was first described by Xu et al[78], who 
proposed its role as a ceRNA by sponging miR-1238 and miR-1299. Circ_0005230 was 
previously associated with an unfavorable prognosis of breast cancer patients; 
reportedly, it can act as a miR-618 sponge and thus enhance CBX8 expression[108]. 
Increasing evidence supports the role of hsa_circ_0001649 as a tumor suppressor[74-77]. 
Its expression has been correlated with the ERK and Wnt/β-catenin pathway[77]. Matrix 
metalloproteinases play crucial roles in several cancer-related processes such as tumor 
neovascularization and metastasis[109]. Matrix metalloproteinase-9 was significantly 
regulated by hsa_circ_0001649 expression in CCA cells[74].

Concerning exosomal circRNAs in CCA, circ-0000284 was identified as a ceRNA, 
directly binding to miRNA-637 and thus stimulating LY6E expression[79]. Finally, the 
newly identified circ-CCAC1 promoted CCA progression via YY1 upregulation by 
sponging miR-514a-5p. YY1 is a transcription factor and gene target of miR-514a-5p. 
The authors suggested positive correlations among circ-CCAC1, YY1 and CAMLG 
expression levels[80].

EXOSOMAL NCRNAs IN CCA: POTENTIAL DIAGNOSTIC AND 
THERAPEUTIC APPLICATIONS, FUTURE EXPECTATIONS
Exosomes and their diverse cargos represent a relatively novel and very promising 
field of investigation in cancer research. Their distinct properties have been valued by 
scholars, and they have currently become a research hotspot. CCA cells harbor specific 
ncRNA expression profiles transferred by EVs to neighboring or distant cells. 
Exosomal secretion into bodily fluids offers a novel, non-invasive liquid biopsy 
approach by detecting specific ncRNA profiles in serum or urine. Interestingly, 
although glomerular infiltration seems to affect the number of detectable ncRNAs in 
urine, some ncRNAs were found to be significantly upregulated in urine EVs isolated 
from patients with CCA[53]. These findings indicate a potential diagnostic value as 
noninvasive biomarkers for CCA. Moreover, we suggest that further research should 
focus on exosomal ncRNA signatures that have been associated with early stage CCA 
detection[47,48,58,66], especially because late stage disease is not amenable to curative 
treatments.

Although EV isolation and characterization techniques have been improved in 
recent years, several concerns still arise regarding the accurate extraction and 
quantification of exosomal ncRNAs. Thus, caution in interpreting current research 
results is clearly warranted. With regard to CCA studies, several points should be 
taken into consideration to explain the conflicting results[49]: The relatively small 
number of published studies; the low patient sample size; and the different specimen 
collection, storage and processing procedures. This contradiction may also be 
attributed to the different ncRNA expression patterns among tissues and fluids of 
different origin. Moreover, despite exosomes being considered relatively stable[110], 
there is still a need for developing universal methodologies in order to establish 
reproducible and reliable data.

Another topic of great importance in CCA management is associated with the role 
of systemic therapy. Despite insufficient response, chemotherapy remains the 
mainstay for patients with advanced CCA. Gemcitabine, cisplatin, 5-fluorouracil and 
oxaliplatin represent the chemotherapy agents that are still included in current 
therapeutic options[111]. Targeted and immunotherapy agents have also shown some 
potential in specific patient subpopulations. A comprehensive assessment of 
interpatient and intratumor heterogeneity is essential in order to understand the 
underlying drug resistance mechanisms and move towards a more personalized 
approach. In this context, exosomal ncRNAs may serve as biomarkers associated with 
response to several therapeutic regimens. There are currently only a few studies that 
have investigated the potential role of exosomal miRNAs as monitoring biomarkers in 
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cancer treatment. For instance, a recent study suggested that plasma exosomal miR-
125b expression may act as a tool for the early detection of resistance to mFOLFOX6-
based chemotherapy in advanced and recurrent colorectal cancer patients[112]. 
Similarly, Wei et al[113] reported that exosomal miR-222-3p played an important role in 
gemcitabine resistance by targeting SOCS3 in non-small cell lung cancer patients. 
Another exosomal miRNA, miR-425-3p was also proposed as a potential prognostic 
marker in cisplatin-resistant non-small cell lung cancer patients[114]. Exosome-
transferred miR-199a-3p mimics seemed to reverse cisplatin resistance in 
hepatocellular carcinoma cells[101]. However, to the best of our knowledge, no study 
has investigated exosome-derived ncRNA signatures in CCA drug resistance. 
Therefore, additional research in this field is needed in order to identify new 
biomarkers.

The high potential of exosomes in CCA diagnosis, prognosis and therapeutic 
approaches has gained considerable research interest. In line with the observation 
from Kitdumrongthum et al[47], one of the most promising therapeutic strategies for 
exosomes is the inhibition of oncogenic ncRNAs. Selectively loaded exosomes could 
serve as vehicles for the targeted delivery of molecules with antitumor properties 
(antioncogenic ncRNA agents). To expand this perspective, such molecules may also 
include ncRNAs that mimic endogenous, tumor suppressing ncRNAs. Indeed, Ota 
et al[50] suggested that miR-30e encapsulated in EVs may suppress CCA metastasis by 
inhibiting EMT and thus could serve as a therapeutic agent. Similarly, EV-mediated 
miR-195 transfer was found to target tumor cells and inhibit CCA cell proliferation in a 
rat model[52]. An interesting procedure has already been described and includes the 
isolation and insertion of designated therapeutic biomolecules into exosomes. Then, 
the modified exosomes are reintroduced to the patient and regulated cellular functions 
that inhibited tumor growth[115]. From a safety perspective, autologous EV 
administration has been well tolerated, exhibiting mild inflammatory responses[116].

Moreover, the design and efficacy of exosome-based therapeutic approaches 
demands comprehensive understanding of exosome pharmacokinetics. So far, the in 
vivo tracking of exosomes includes fluorescence labeling or radiolabeling methods[117]. 
The half-life of exosomes and EVs have been reported in the literature[118,119]. It is 
interesting to mention that exosomes isolated from patient fluids or tissues have 
longer circulation times due to low immunogenicity[120]. However, there are several 
factors that affect exosome concentration in systematic circulation and target tissues. 
Apart from the route of administration and dose, the pharmacokinetic parameters of 
exosomes depend on individual genetic variations, blood flow, organ volume and 
clearance[121,122]. Several bioengineering strategies, including polyethylene glycol-based 
formulations, have been proposed in order to improve the exosome half-life in 
circulation and target tissues[123]. Further research focusing on tissue-specific analytical 
methods towards dose individualization is needed due to variations in exosome 
absorption, distribution, metabolism and elimination.

Considering the above, an optimal drug delivery system should be able to escape 
immune defense mechanisms, transfer the incorporated cargo selectively to tumor 
sites and display minimum toxicity to normal tissues. Exosomes, as a natural body 
product, can avoid phagocytosis, enter target cells and escape degradation by 
lysosomes with limited immune response[124]. In general, EV tropism depends on the 
nature of the progenitor cell[125]. Thus, the appropriate exosome selection for 
engineering is crucial. Indeed, an increasing number of studies have proposed EV 
modification towards enhancing targeted drug delivery and anticancer efficacy. For 
instance, paclitaxel-loaded EVs from prostate cancer cells displayed improved efficacy, 
and the targeted delivery was partially attributed to surface proteins. Moreover, the 
authors suggested that the use of autologous cancer cell-derived EVs offer an 
advantage because they are taken up by both parent cells and other cells in the tumor 
microenvironment[126]. Accordingly, genetic modification of MSCs-derived and 
dendritic cell-derived exosomes has been a subject of extensive research in several 
tumor types[127-131]. Various methods for EV engineering have been described; 
electroporation for miRNA loading and incubation for loading chemotherapy drugs 
into exosomes are two of the most commonly used techniques[132].

In conclusion, despite that numerous studies have suggested possible therapeutic 
applications for exosomes, very few clinical trials have been conducted until now. 
Indeed, our brief search in ClinicalTrials.gov did not reveal any clinical trial using 
exosomes for CCA treatment. On the other hand, there are very few interventional 
clinical trials (phase I-II) investigating the role of exosomes as drug-delivery 
microsystems in the treatment of other types of cancer[133-136]. This may be attributed to 
the fact that there are still several questions that need to be answered, such as the exact 
recipient cell uptake processes of exosomes in vivo. Nevertheless, we did identify one 
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prospective observational study aiming to characterize TD exosomal ncRNAs as 
potential biomarkers in CCA[137]. Finally, it is worth mentioning that one recently 
added interventional clinical trial aims to investigate exosomal PD-L1 and miRNA 
expression profiles in non-small cell lung cancer patients receiving immunotherapy[138].

CONCLUSION
Exosomal ncRNAs represent a fast growing and promising field of current cancer 
research. CCA-derived exosomes are loaded with unique ncRNA signatures that may 
serve as important tools for the early diagnosis and prognosis of cholangiocarcinoma. 
Further, targeted, large-scale research is needed in order to identify new diagnostic 
and prognostic biomarkers with acceptable sensitivity and specificity in CCA. 
Although the concept of exosomes as delivery “nanosystems” of antitumor 
biomolecules is very recent, it provides a very promising prospect in CCA treatment 
due to the limited treatment options for this type of cancer.
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