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Abstract: The current consensus for the prevention and management of type 2 diabetes mellitus
(T2DM) is that high-quality diets and adherence to a healthy lifestyle provide significant health
benefits. Remarkably, however, there is little agreement on the proportions of macronutrients in the
diet that should be recommended to people suffering from pre-diabetes or T2DM. We herein discuss
emerging evidence that underscores the importance of gene-diet interactions in the improvement of
glycemic biomarkers in T2DM. We propose that we can achieve better glycemic control in T2DM
patients by coupling Mediterranean diets to genetic information as a predictor for optimal diet
macronutrient composition in a personalized manner. We provide evidence to support this concept
by presenting a case study of a T2DM patient who achieved rapid glycemic control when adhered to
a personalized, genetically-guided Mediterranean Diet.

Keywords: type 2 diabetes mellitus; Mediterranean diet; SNP; nutrigenetics; personalized nutri-
tion; glycemia

1. Introduction

Long considered a disease of minor significance, type 2 diabetes mellitus (T2DM) cur-
rently represents a major threat to human health with an estimated number of 425 million
adult patients and four million deaths globally in 2017. Substantial evidence indicates that
T2DM can be largely prevented or managed through adherence to a healthy lifestyle and a
high-quality diet (as assessed by Healthy Eating Index-HEI [1]) is recommended to people
at risk for diabetes or to T2DM patients as a therapy [2–5]. Surprisingly, however, there
are no specific recommendations for the proportions of macronutrient intake that should
be applied for people suffering from pre-diabetes or diabetes [6]. The Obesity Society, for
example, recommends a diet comprising approximately 30% energy from total fat [15–20%
from monounsaturated fatty acids (MUFA), 10% from polyunsaturated fatty acid (PUFA),
7% from saturated fatty acids (SFA)], 15–35% from protein and 45–65% energy from car-
bohydrates for the management of T2DM [7]. On the other hand, the Mediterranean diet
(Med Diet) which demonstrates benefits over several metabolic diseases including T2DM, is
considered a high fat diet (40% total fat) but rich in MUFA and poor in saturated fat [8–10].

Notably, the traditional Med Diet is rich in fibers and high-quality foods that have
been proven a key strategy to achieve glycaemic control [11]. For example, grains, whole
grain flours and breads from traditional Greek wheat varieties of Triticum monococcum
and Triticum dicoccum, contain very high levels of alkylresorcinols [12] which have been
associated with increased insulin sensitivity in metabolic syndrome patients [13] but are
absent from white flour and its products.
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It is therefore evident that there are no “golden rules” guiding the proportion of
macronutrients for T2DM dietary therapy [14]. Moreover, even though the Med Diet
has been proven successful in reducing chronic disease burden at population level [15],
it does not take into account individualized needs and, as many other diets, it is based
on population average. As a result, the search for an ideal high-quality diet for diabetes
patients continues to grow.

In addition, T2DM is a highly heterogeneous disease influenced by genetic factors
and nutrient-gene interactions, as indicated by twin and family studies [16–18]. With
the emergence of genome wide association studies (GWAS) and more recently exome
sequencing, a plethora of data has provided additional evidence for a genetic basis for
T2DM. More than 140 genomic loci have been associated with predisposition to T2DM,
improving our understanding of the genetic architecture and biology of the disease [19].
Genetics also influences individual responses to both macro- and micro-nutrients [20,21] and
emerging evidence underscores the importance of gene–diet interactions in the improvement
of glycaemic biomarkers.

We herein review the published evidence linking genetic variation to the selection of
specific macronutrient composition for the management of T2DM (Table 1). Our overarch-
ing concept is to bridge the Med Diet with genetic information that can be used as predictor
for optimal diet macronutrient composition in a personalized manner. We propose that
by taking into account genetic information when formulating Med Diet-based nutritional
recommendations, we can achieve better glycaemic control in T2DM patients. Herein we
provide evidence to support this concept by presenting a case study of a T2DM patient
who achieved rapid glycaemic control when adhered to a personalized, genetically-guided
Med Diet.

Table 1. Gene variants associated with the selection of specific macronutrients for the dietary management of T2DM.

Gene Variants
Macronutrient/s

Involved in
Health Outcome

Health Outcome Related to
T2D Cohort/Time Reference

Carbohydrates (CHO)

MTNR1B
Melatonin
receptor 1B

rs1387153 (C/T)
T risk allele for
T2D; C is the

common allele

Increment of 1% of
CHO

0.003 mmol/L higher
fasting glucose with each

additional 1% carbohydrate
intake in the presence of the
MTNR1B rs1387153 risk T

allele

5 cohort studies
including up to 28,190

participants of
European descent

from the Cohorts for
Heart and Aging

Research in Genomic
Epidemiology

(CHARGE)
Consortium.

[22]

APOA5
Apolipoprotein

A5

rs662799 (T/C)
C risk allele

dyslipidemias;
T is the common

allele

Substitution of
high-quality CHO
with low quality

(whole grains and
legumes

substitution with
refined rice)

Patients with impaired
glucose carrying the APOA5

rs662799 risk allele C
showed a greater increase in
the mean percent changes of

triglyceride and
apolipoprotein A5 when
they substituted whole

grains and legumes with
refined rice

93 patients with
impaired glucose with

50 risk allele
carriers/12 weeks

[23]
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Table 1. Cont.

Gene Variants
Macronutrient/s

Involved in
Health Outcome

Health Outcome Related to
T2D Cohort/Time Reference

CRY1
(Cryptochrome

Circadian
Regulator 1)

rs2287161
(G/C minus)

C risk allele for
mood disorders;
G is the common

allele

Increase in CHO
intake (% of energy

intake)

An increase in carbohydrate
intake (% of energy intake)

was associated with a
significant increase in
homoeostatic model

assessment (HOMA-IR) for
insulin resistance fasting
insulin and a decrease in

QUICKI only among
individuals homozygous for

the CRY1 rs2287161 risk
allele C

Two independent
populations: a

Mediterranean (n =
728) and a European

origin North American
population (n = 820).

[24]

PCSK7
(Proprotein

convertase sub-
tilisin/kexin

type 7)

rs236918
(C/G minus)

G risk allele (rare)
for increased levels

of ferritin and
soluble transferrin

receptor (sTfR)
and liver cirrhosis;
C is the common

allele

High CHO
(55–65%) vs low

CHO (35–45%) of
low glycemic index

GG homozygotes of PCSK7
rs236918 (rare) had a greater
decrease in fasting insulin

when consuming a
high-CHO diet (CHO-rich
foods with low glycemic
index were used in the
present intervention).

730 overweight or
obese adults

2-year weight-loss trial
[25]

Carbohydrates-Fibre

TCF7L2
Transcription

Factor 7-Like 2

rs7903146 (C/T)
T risk allele for
T2D; C is the

common allele

High-quality CHO

Higher fiber intake may
associate with protection

from T2D only among
TCF7L2 rs7903146 CC allele

carriers

Cohort of 24,799
non-diabetic

individuals from the
Malmö Diet and

Cancer Study (MDCS),
with dietary data

obtained by a
modified diet history

method,
follow up for 12 years,
with 1,649 recordings
of incident T2D made

[26]

GCKR
Glucokinase
regulatory

protein

rs780094 (G/A
minus)

A risk allele for
T2D and

dyslipidemias;
G is the common

allele

High-quality CHO

Beneficial effects of
whole-grain foods on

insulin homeostasis are
diminished in GCKR

rs780094 AA risk carriers.
This is possibly via the
strong effect of GCKR

variant on both triglyceride
and glucose levels.

14 cohorts comprising
∼48,000 participants
of European descent

(meta-analysis)

[27]

FAT

PPM1K
PP2C domain-

containing
protein

phosphatase
1K

rs1440581 (C/T
minus)

C risk allele.
For T2D and

increased BCAA
/AAA ratio;

T is the common
allele

Low-fat diet (20%
fat) vs high-fat diet

(40% fat)

Individuals carrying the
PPM1K rs1440581 C allele
benefit less in weight loss

and improvement of insulin
sensitivity than those

without this allele when
undertaking an

energy-restricted high-fat
diet

734 overweight or
obese adults

2-year weight-loss trial
[28]
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Table 1. Cont.

Gene Variants
Macronutrient/s

Involved in
Health Outcome

Health Outcome Related to
T2D Cohort/Time Reference

PPM1K
PP2C domain-

containing
protein

phosphatase
1K

rs1440581
(C/T minus)
C risk allele.
For T2D and

increased BCAA
/AAA ratio;

T is the common
allele

Low-fat diet:
20–25% fat, 15%

protein, and
60–65%

carbohydrate;
high-fat diet:

40–45% fat, 15%
protein, and

40–45%
carbohydrate

In high-fat diet, the T allele
was associated with a higher

reduction of insulin and
HOMA-B. #

The opposite effect was
observed in the low-fat diet

group, although in this
group the T allele was

marginally associated with
insulin and HOMA-B,

757 nondiabetic
individuals who were
randomly assigned to

1 of 2 energy-restricted
diets that differed in

macronutrient
composition

[29]

Genetic score
of

SNPs related to
habitual coffee
consumption-

8 SNP
Low-fat diet (20%
fat) and high-fat

diet (40% fat)

Participants genetically
prone to high coffee

consumption may benefit
more by eating a low-fat
diet in improving fasting

insulin and HOMA-IR in a
short term (Actual coffee

consumption was not taken
into account)

811 overweight or
obese individuals aged

30–70 y and with a
BMI (in kg/m2) of

25–40.
2-year weight-loss trial

[30]

CLOCK
Clock circadian

regulator

rs4580704 (G/T)
G allele with

protective effect for
T2D; C is the

common allele

MUFA > 13.2% of
energy

SFA intakes
(>11.8%).

The protective effect of the
CLOCK rs4580704 G allele
on insulin sensitivity was
only present when MUFA

intake was >13.2% of energy.
The adverse effect of C allele

variant on waist
circumference was only

observed with high
saturated fatty acid intakes

(>11.8%).

Participants (n = 1100)
in the Genetics of

Lipid Lowering Drugs
and Diet Network

(GOLDN)

[31]

CLOCK
Clock circadian

regulator

rs1801260 (C/T)
C risk allele for
MetS; T is the
common allele

High saturated
fatty acid (SFA)

intakes (>11.8%).

Individuals carrying the
CLOCK rs1801260 risk C

allele had increased waist
circumference only with
high saturated fatty acid

intakes (>11.8%).

Participants (n = 1100)
in the Genetics of

Lipid Lowering Drugs
and Diet Network

(GOLDN)

[31]

Genetic risk
score (GRS)

SNPs related
for fasting
glucose-

14 SNPs
Low-fat diet (20%
fat) and high-fat

diet (40% fat)

Participants with a higher
genetic risk may benefit
more by eating a low-fat
diet to improve glucose

metabolism.

733 adults
2-year weight-loss trial [32]

CLOCK
Clock circadian

regulator

rs1801260
(C/T)

C risk allele for
MetS;

T is the common
allele

(Med Diet: 35% fat,
22%

monounsaturated
fatty acids

(MUFA)) versus
low-fat diet (28%
fat, 12% MUFA).

12 months of low-fat
intervention, subjects who
were homozygous for the

common allele T displayed
lower plasma insulin

concentrations lower insulin
resistance and higher

insulin sensitivity compared
with carriers of CLOCK

rs1801260 risk allele C (TC +
CC). The opposite effect
observed with MedDiet
although didn’t reach
statistical significance

5 MetS subjects
participating in the

CORDIOPREV
12 month intervention

[33]
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Table 1. Cont.

Gene Variants
Macronutrient/s

Involved in
Health Outcome

Health Outcome Related to
T2D Cohort/Time Reference

ADIPOQ
Adiponectin

ADIPOR1
Adiponectin

receptor 1

ADIPOQ rs266729
(C/G)

C risk allele for
increased waist
circumference;

G allele protective
effect against colon

cancer
ADIPOR1

rs10920533 (G/A)
A risk allele for
increased waist

circumference; A is
the common allele

SFA reduction

A reduction in plasma SFAs
lowers insulin resistance in

MetS subjects who are
ADIPOQ rs266729 CC
carriers and ADIPOR1
rs10920533 AA carriers

451 subjects with the
MetS who participated

in the LIPGENE
[34]

CLOCK
clock circadian

regulator

rs4580704 (G/C)
G allele with

protective effect for
T2D; C is the

common allele

MED diet rich in
MUFA

Med Diet increased the
protective effects of the

CLOCK rs4580704 G-allele
against T2D and stroke

7098 PREDIMED trial
(ISRCTN35739639)
participants after a

median 4.8-year
follow-up.

[35]

TCF7L2
Transcription

Factor 7-Like 2

rs7903146 (C/T)
T risk allele for

T2D;
C is the common

allele

High dietary SFA
intake (≥15.5%

energy)

High dietary SFA intake
(≥15.5% energy)

exacerbated MetS risk and
was associated with further
impaired insulin sensitivity

in the T allele carriers
relative to the CC
homozygotes and

particularly to the T allele
carriers with the lowest SFA

intake

LIPGENE-SU.VI.MAX
study of MetS cases

and matched controls
(n = 1754)

Cohort of 13,000
individuals studied

over 7.5 years
beginning in 1994 to

2002

[36]

LEPR
Leptin receptor

rs3790433 (G/A
minus)

G risk allele
(common)
for insulin
resistance;

A is rare allele

Low (plasma (n-3)
and high (n-6)

PUFA

Individuals with LEPR
rs3790433 GG genotype
exacerbated their risk to
hyperinsulinemia and

insulin resistance when their
plasma levels where low for

(n-3) and high for (n-6)
PUFA These associations
were abolished against a

high (n-3) or low (n-6) PUFA
background.

LIPGENE-SU.VI.MAX
study of MetS cases

and matched controls
(n = 1754).

Cohort of 13,000
individuals studied

over 7.5 years
beginning in 1994 to

2002

[37]

PROTEIN

GRS
related to
diabetes

31 SNPs

Low-protein diet
(15% protein) and
high-protein diets

(25% protein).

Individuals with a lower
genetic risk of diabetes may

benefit more from
consuming a low-protein

weight-loss diet in
improving insulin resistance
and β cell function, whereas
a high-protein diet may be
more beneficial for white

patients with a higher
genetic risk

744 overweight or
obese nondiabetic

adults
2-year weight-loss trial

Pounds lost trial

[38]
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Table 1. Cont.

Gene Variants
Macronutrient/s

Involved in
Health Outcome

Health Outcome Related to
T2D Cohort/Time Reference

GRS related to
BMI and/or

WHR

159 SNPs
SNPs related to

obesity abdominal
obesity and T2D

Low-protein diet
(15% protein) and
high-protein diets

(25% protein).

Participants with higher
WHR only*+PGS showed

less increased fasting
glucose and less reduction

in HOMA-B when
consuming an

average-protein diet,
compared with lower WHR

only+PGS. Conversely,
eating high-protein diet was

associated with less
decreased HOMA-B among
individuals with lower than

higher WHR only+PGS
*waist-hip ratio-increase

only

692 overweight
participants (84%
white Americans)

2-year weight-loss trial
Pounds lost trial

[39]

DHCR7
7-

Dehydrocholesterol
Reductase

rs12785878 (T/G)
T risk allele for

vitamin D
deficiency

G allele rare in
Caucasians (no
health effect)

Low-protein diet
(15% protein) and
high-protein diets

(25% protein).

Individuals carrying the
DHCR7 rs12785878 T

genotype might benefit
more in improvement of
insulin resistance than

noncarriers by consuming
high-protein weight-loss

diets.

6 months (up to 656
participants) and 2

years (up to 596
participants)
6 and 2-year

weight-loss trial
Pounds lost trial

[40]

MIXED DIETARY PATTERNS

S100 Calcium-
binding protein

A9 (S100A9)

rs3014866 (C/T)
C risk allele for

T2D
T allele protective
against diabetes.

Low SFA: CHO
ratio

Individuals with the S100A9
rs3014866 CC risk genotype

may be more likely to
benefit from a low SFA:

carbohydrate ratio intake to
improve insulin resistance

as evaluated with the use of
the HOMA-IR

3 diverse populations:
the CORDIOPREV

(Coronary Diet
Intervention with

Olive Oil and
Cardiovascular

Prevention; n = 711),
which consisted of

Spanish white adults;
the GOLDN (Genetics

of Lipids Lowering
Drugs and Diet

Network; n = 818),
which involved North

American
non-Hispanic white

adults; and
Hispanic adults who

participated in the
BPRHS (Boston Puerto

Rican Health Study;
n = 1155).

[41]

GIPR
Gastric

inhibitory
polypeptide

receptor

rs2287019 (C/T)
C risk allele for

T2D
T allele rare

Low-fat diet (20%
fat) and high-fat

diet (40% fat)
High CHO

(55–65%) vs low
CHO (35–45%)

of low glycemic
index

The T allele of GIPR
rs2287019 is associated with

greater improvement of
glucose homeostasis in

individuals who choose a
low-fat, high-carbohydrate,

and high-fiber diet.

737 overweight adults
2-year weight-loss trial

Pounds lost trial
[42]



Nutrients 2021, 13, 355 7 of 14

Table 1. Cont.

Gene Variants
Macronutrient/s

Involved in
Health Outcome

Health Outcome Related to
T2D Cohort/Time Reference

IRS1 Insulin
receptor

substrate 1

rs2943641 (C/T)
C risk allele for

T2D
T allele rare

Low-fat diet (20%
fat) and high-fat

diet (40% fat)
High CHO

(55–65%) vs low
CHO (35–45%)

of low glycemic
index

Individuals with the IRS1
rs2943641 CC genotype
obtain more benefits in

weight loss and
improvement of insulin

resistance than those
without this genotype by

choosing a
high-carbohydrate and

low-fat diet

738 overweight adults
2-year weight-loss trial

Pounds lost trial
[43]

PLIN-1
Perilipin 1

rs894160 (G/A
minus)

A risk allele for
increased waist

circumference and
T2D; G is the

common allele

SFA: CHO

Women with PLIN1
rs894160 AA genotype were
more susceptible to insulin

resistance in when
consuming a high-saturated
fat, low-carbohydrate diet.

Furthermore in another
study high complex

carbohydrate in takes from
individuals with the risk

allele were protected against
obesity, and the opposite

was observed when
consuming a low
carbohydrate diet

Total of 1909 men and
2198 women (aged

18–69 years)
1 year randomized

study

[44]

GRS for T2D 10 SNPs Protein, SFA low
quality food

Intakes of processed meat,
red meat, and heme iron
(Western dietary pattern)

showed significant
interactions with GRS in

relation to diabetes risk. The
diet-diabetes associations
were more evident among
men with a high GRS than
in those with a low GRS.

Health Professionals
Follow-Up Study

(HPFS) cohort
(prospective)

Nested, case-control
study of 1196 diabetic
and 1337 nondiabetic

men.
1986–2000

[45]

TCF7L2
Transcription

Factor 7-Like 2

rs7903146 (C/T)
T risk allele for
T2D; C is the

common allele

High intake of
desserts and milk

The T2D risk was greater in
T allele carriers with high

dessert and milk. In subjects
with a high dessert intake,

the T allele was also
associated with higher
fasting plasma glucose

concentrations

787 subjects (378 men
and 409women, aged
between 30 and 64).

[46]

2. Genetic Variations Guiding Carbohydrate Intake in T2DM
2.1. Genetic Variants Guiding the Quantity of Carbohydrate Intake

Even though carbohydrates (CHO) have a major dietary influence on postprandial
blood glucose, evidence on total carbohydrate needs and T2DM is largely conflicting [26].
Surprisingly, even the anticipated protective effect of total fruit intake on T2DM could
not be replicated in a meta-analysis contacted in the context of the European Prospective
Investigation into Cancer (EPIC)-InterAct study [47]. Genetic variation is likely to account
for the heterogeneity of T2DM patient responses to carbohydrates (Table 1). Indeed, several
polymorphisms have recently been identified to influence glucose levels in response to
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carbohydrate intake. Among them, transcription factor 7-like 2 (TCF7L2) gene variant
rs7903146 has attracted significant attention as it is one of the strongest genetic markers of
predisposition to diabetes, with the TT genotype increasing disease risk by 40–50% [48].
Interestingly, even though this high risk polymorphism is associated with lower BMI ([49]
and our unpublished data on Greek population), it is also associated with significantly
higher increase of fasting glucose when consuming increased amounts of desserts compared
to non-carriers [46].

The melatonin receptor 1b (MTNR1B) variant rs1387153 is another example of genetic
variation influencing T2DM patient responses to CHO. An analysis of 5 cohort studies
including more than 28,000 participants has demonstrated that the minor T allele of
rs1387153 strongly interacts with CHO in modulating fasting glucose, to the extent that
every 1% increase in CHO intake exacerbates the fasting glucose-raising effect of the
T allele [22].

Cryptochrome 1 (CRY1) variant rs2287161, which has been associated with the regula-
tion of circadian rhythms and linked to depression and sleep disturbance [50], also modifies
the CHO effect on glycaemic indices. In this case, increased carbohydrate intake (as a
percentage of energy intake) was associated with elevated HOMA-IR and fasting insulin
only among individuals homozygous for the risk allele C [24]. In contrast, G homozygotes
for pro-protein convertase subtilisin/kexin type 7 (PCSK7) gene variant rs236918 who
were assigned to a high-carbohydrate diet displayed a greater decrease in fasting insulin
levels and HOMA-IR than non-carriers [25]. Interestingly, both MTNR1B and PCSK7
polymorphisms have been associated with increased risk of diabetes [51,52].

2.2. Genetic Variants Guiding the Quality of Carbohydrate Intake

The quality of carbohydrates appears to play important roles in the management of
T2DM and the results of relevant prospective studies and clinical trials are much more
coherent compared to those addressing the impact of the quantity of carbohydrates on
T2DM [53]. People with diabetes and those at risk for diabetes are encouraged to consume
at least the amount and quality of dietary fibre recommended for the general public that
includes vegetables, pulses and fruit [54].

However, emerging evidence suggests that genetic variation may influence individual
responses to different sources of fibre. Among them, TCF7L2 gene variant rs7903146 has
attracted significant attention [48]. Interestingly, two independent studies have reported
that whole grain as a dietary source of CHO is associated with protection from T2DM
only among non-risk CC genotype carriers [26,55]. This suggests that carriers of a T allele
of rs7903146 would not benefit from a whole grain-enriched diet and alternative dietary
approaches should be explored.

Likewise, the glucokinase regulatory protein (GCKR) gene variant rs780094, which
has been explored as a component of polygenic risk for T2DM and dyslipidemia [56]
diminishes the beneficial effects of whole-grain foods on insulin homeostasis, possibly via
the reported effect of GCKR variant on both triglyceride and glucose levels [27].

Another gene polymorphism associated with the response of T2DM patients to par-
ticular sources of carbohydrates is apolipoprotein-A5 (APOA5) SNP rs964184. It has been
reported that compared to rs964184 TT homozygotes, T2DM patients with impaired fasting
glucose who carry the C allele of rs964184 could be more susceptible to the adverse effects
of a high carbohydrate diet based on refined rice by having an elevation of triglycerides [23].
Therefore, the replacement of refined rice with whole grains and legumes in a high car-
bohydrate diet should be considered for individuals with impaired fasting glycemia who
carry the APOA5 rs964184 C variant, to prevent diabetic hypertriglyceridemia.

3. Genetic Variations Guiding Fat Intake in T2DM

Even though fat consumption has broadly been associated with elevated risk for the
development of metabolic diseases, there is still a debate about the recommended daily
intake of fat in T2DM patients, reportedly ranging from 10% up to 40% [14]. Conflicting
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data may be due to variations in food sources of fat [57] or the proportion of fat in the
context of the overall dietary pattern. Indeed, according to the PREDIMED clinical study,
individuals who adhered to a Med Diet plan supplemented with extra virgin olive oil
had on average 40% lower risk to develop diabetes compared to those following a low-
fat diet [58].

Several genes have been identified to impact responses to fat in T2DM. One of them is
PPM1K (phosphatase, Mg2+/Mn2+-dependent 1 K) gene variant rs1440581. Individuals
who are homozygous for the T allele of this SNP benefit most by a high-fat diet (40–45%
fat, 15% protein, and 40–45% carbohydrate) in reducing insulin and homeostatic model
assessment for β-cell function (HOMA-B) during weight loss whereas the opposite effect
is observed for a low fat diet (20–25% fat, 15% protein, and 60–65% carbohydrate) [29].
Similarly, in another intervention study, the C allele was related to smaller decreases
in serum insulin and homeostatic model assessment for insulin resistance (HOMA-IR)
in obese and overweight individuals following an energy-restricted high-fat diet plan
(40% energy intake from fat), whereas an opposite genotype effect on changes in insulin
and HOMA-IR was observed in a low-fat diet group (20% energy intake from fat [28]).
Together, these reports suggest that pro-diabetes or T2DM patients with PPM1K rs1440581
TT genotype would benefit from an energy-restricted high-fat diet whereas carriers of the
C allele could be advised to follow a low-fat diet.

Genetic risk scores (GRS), generated by combining the additive effects of several
genetic variants, have also been explored to predict optimal dietary fat composition for
T2DM patients. For example, a high genetic risk score (GRS) of 14 fasting glucose-associated
SNPs could predict health benefit for a diet low in fat [32]. Furthermore, in another
study [30] a significant interaction between a genetic score calculated on the basis of eight
variants previously associated with habitual coffee consumption [59] and dietary fat intake
was observed. It was shown that the group with the highest genetic score for coffee
consumption had significantly greater reduction in fasting insulin when following a low
fat diet. Interestingly, even though the initial idea of this study was based on the fact that
coffee consumption is associated with improved insulin sensitivity and reduced risk for
diabetes [60], actual coffee consumption was not considered [30].

Variations in food sources of fat may play an important role in modulating fasting
glucose and other bioclinical variables in T2DM patients. In general, replacing saturated
with unsaturated fat in the diet reduces total cholesterol, LDL-C and CVD risk [61]. Sur-
prisingly, a meta-analysis of observational studies has not identified high dietary saturated
fatty acid (SFA) intake as a risk factor for T2DM [62] However, this conclusion should be
considered through the prism of genetic variation. Indeed, high dietary SFA intake (≥15.5%
energy) impairs insulin sensitivity and increases the risk for metabolic syndrome in carriers
of the T risk allele of TCF7L2 rs7903146 polymorphism relative to CC homozygotes [36]
Likewise, high dietary SFA intake (≥11.8% energy) leads to increased waist circumference
and consequently increases the risk for metabolic syndrome in carriers of the C risk allele
of CLOCK rs1801260 [31]. Furthermore, diets rich in MUFA and PUFA may have a dual
role as they can either reveal the protective effect that some polymorphisms have towards
T2DM [35] or to abolish the detrimental effects of some others [34].

4. Genetic Variations Guiding Protein Intake in T2DM

Typically, the average daily level of protein intake for people with diabetes is 1–1.5 g/kg
body weight/day or 15–20% of total calories. However, two published meta-analyses have
indicated that high protein diets confer several health benefits in diabetes patients [63,64].

We reason that genetic variation may affect individual responses to different protein
percentages in the diet (Table 1). Several studies support this notion. For example, poly-
genic scores, based on combinations of multiple susceptibility loci identified by GWAS,
are increasing explored because they reflect the polygenic nature of T2DM and are more
relevant to gene–diet interactions. A recent study demonstrated interaction between a
polygenic score of 31 T2DM risk alleles and protein percentage in the diet. In particular,
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individuals with a lower polygenic score for T2DM showed more favourable responses to
low-protein diets, including greater decreases in fasting insulin, HbA1c, and homeostatic
model assessment for insulin resistance (HOMA-IR), and a lesser increase in and homeo-
static model assessment for β-cell (HOMA-B) function, than did individuals with a higher
risk score within 2 years of follow-up [38]. Another study similarly explored 159 obesity
genes combined with phenotypic characteristics such as waist hip ratio and BMI to create
different adiposity subtypes which were found to differentially modify the effect of protein
intake on improving glucose metabolism [39].

An interaction between vitamin D metabolism-related variants and macronutrient
responses in the context of T2DM was demonstrated by the Pounds Lost Trial group;
patients with the vitamin D-increasing T allele of the DHCR7 variant rs12785878 had
a greater improvement of glycaemic parameters when assigned to high-protein diets,
whereas improvement was not evident in those who followed a low protein diet [40].

5. Genetic Variations and Mixed Dietary Patterns for the Management of T2DM

A variety of dietary patterns are acceptable for the management of diabetes. Still, the
evidence surrounding comparative benefits of different macronutrient ratios or dietary
patterns in T2DM patients and the influence of genetics thereof is scarce [14].

One example of genetic variation influencing responses to mixed dietary patterns
is GIPR variant rs2287019 (Table 1). T2DM patients who carry the T allele of rs2287019
and choose a low-fat, high-carbohydrate and high-fibre diet, show greater improvement
in glucose homeostasis [42]. Likewise, it has been reported that T2DM patients carrying
the IRS1 variant rs2943641 CC genotype might obtain more benefits in weight loss and
improvement of insulin resistance than those without this genotype when they adhere to a
high-carbohydrate and low-fat diet [43]. Additionally, T2DM patients who are homozygous
for the C allele of S100A9 (S100 calcium-binding protein A9) rs3014866 variant are more
likely to benefit from a low SFA: carbohydrate ratio intake to improve insulin sensitivity,
based on HOMA-IR levels [41]. A western type diet, characterised by high intake of
processed meat, red meat and heme iron, increases the risk of T2DM in individuals with a
high polygenic score defined by ten T2DM risk alleles [45].

6. Discussion

Rapidly evolving technologies have offered unparalleled opportunities to assess
bioclinical, dietary and genetic data that can improve the management of metabolic diseases
such as T2DM. As indicated in this review, high-quality diets rich in n-3 PUFA and MUFA
and low in saturated fat are universally proposed for the prevention and management of
T2DM. This concept aligns with the Mediterranean dietary patterns typified by high-quality
nutritional elements offering several health benefits. Notably, there is significant variation
in the macronutrient distribution among different Mediterranean diets (Cretan/Greek,
Italian, Spanish or Mediterranean-like) [65]. Likewise, dietary recommendations for T2DM
patients largely vary with respect to macronutrient distribution which may impair the
efficacy and goals of nutritional therapy for diabetes [14].

We propose that prevention and management of T2DM could be improved by combining
genetically-guided quantitative and qualitative macronutrient recommendations (Table 1)
with the high quality nutrition patterns of Med Diets. We have successfully applied this
concept to several T2DM patients. As an example, a normal weight male T2DM patient,
homozygous for MTNR1B rs1387153 risk allele T, with a high genetic risk score for diabetes
and a high genetic score for coffee consumption was advised to change the macronutrient
distribution of his diet from 54% carbohydrate, 32% fat and 16% protein to lower carbohydrate
(50%), low fat (25%) and high protein (25%) diet based on Mediterranean high quality foods
and olive oil (rich in MUFA and low in saturated fat) [66–68]. Some life style changes were also
recommended based on his genetic makeup, such as not to consume dinner late at night and
breakfast early in the morning and to avoid early rising (this individual was homozygous to
MTNR1B rs10830963 risk allele G which is in linkage disequilibrium with rs1387153 in Greek
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people) [69–71]. Two months later he had significantly lower plasma insulin concentrations
and higher insulin sensitivity.

The emerging prospects of precision nutrition call for re-evaluation of dietary thera-
pies for T2DM taking into account genetic information that could enable stratification of
patients towards specific macronutrient intakes. Intervention and observational studies
should involve collection of extensive dietary exposure data and, importantly, validation
in independent populations to provide solid evidence for interactions between genotype,
diet and disease [72].
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